
~~pplying Arch it tufj Mod ling
M thodology to Ent rpri

oftwafj Domain "

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Applying Architecture Modeling Methodology to Enterprise Software
Domains

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rivera Group,555 Maple Ave,Sellersburg,IN

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SBA 8(a) Small
Disadvantaged
Business

Service-Disabled
Veteran Owned Small
Business

HubZone Certified
Minority-Owned
Business

President of Rivera Group
Specialization: Enterprise
Software Development,
Research & Development,
Business Process
Reengineering (BPR)
R&D Projects: Modeling &
Simulation, Natural
Language Processing
(NLP) of Open Source data
for the Intelligence
Community

2

Rivera, J., Auguston, M., Finkbine, R. (2011) Modeling Methodology for Validation
and Verification of System Architecture Designs, 23rd Annual Systems &
Software Technology Conference (SSTC 2011), Salt Lake City, Utah.

Rivera, J. (2010). Applying Architecture Modeling Methodology to the Naval
Gunship Software Safety Domain. ACM/IEEE 13th International Conference
on Model Driven Engineering Language and Systems. Oslo, Norway.

Rivera, J., & Luqi. (2010). Requirements Framework for the Software System
Safety Technical Review Panel Technical Review Package. Monterey, CA:
Naval Gunnery Project Office PEO WS3C.

Rivera, J., Luqi, and Berzins, V. (2009) Effective Programmatic Software Safety
Strategy for US Navy Gun System Acquisition Programs, 6th Annual
Acquisition Research Symposium of the Naval Postgraduate School:, Vol. 2,
Monterey, CA.

3

Eagle6 is a modeling and
simulation tool that is capable
of predicting system behavior.

Ensure Changes to System
Architecture Do Not Cause
Unintended System Behavior

Validates Architectural Designs
That Mix Legacy Systems and New
Technologies

Evaluates Business Process
Reengineering Designs (Lean Six
Sigma)

Question: “I have a great idea, but
what happens if I change my
system architecture?”

Answer: Test BEFORE You Invest!
4

Problem: What could happen if I upgrade/change this system?

Coming Up: How we solve this problem…
5

“System Architecture Designs May Contain
Unintended and/or Unknown System Behavior.”

6

7

Typical difficulties

Users initial concept of system is nebulous
Users description of system is incomplete and inconsistent
Users (usually) don't understand what they really need
Interpreting users description of problem is error-prone
Perception of system changes during analysis, requires reworking
Different users will view the system differently

Question: How do we know if the system architecture represents all system
requirements?
Answer: Model Checking

Major goal of software engineers
◦ Develop reliable systems
Formal Methods
◦ Mathematical languages, techniques and tools
◦ Used to specify and verify systems
◦ Goal: Help engineers construct more reliable

systems
A mean to examine the entire state space of a
design (whether hardware or software)
◦ Establish a correctness or safety property that is

true for all possible inputs

8

Past years of the formal methods
◦ Obscure notation
◦ Non-scalable techniques
◦ Inadequate tool support
◦ Hard to use tools
◦ Very few case studies
◦ Not convincing for practitioners

Bottom Line: It’s not easy.

9

Key Goal: Find Unknown or Unintended System
Behavior

Architecture Verification via Exhaustive Scope
Testing

Traditional
Testing

Testing: A few cases of arbitrary size

Eagle6 Exhaustive
Testing

Scope Complete: All cases within scope

3
2

Scope
1

Unknown (Unintended) System Behavior

Known System Behavior

10

Pros
Great for system safety
testing.
◦ Medical Systems
◦ Weapon Systems

Great for finding
unknown system
behavior and/or
architectural design
flaws (assertion
checking)

Cons
Modeling languages
are very complex and
require domain
expertise

Models require a very
long time to develop

Modifying models is
not easy, making reuse
very difficult

11

Your Text

Your Text

Your Text

Your Text

Using a single
model allows for
system constraints
to remain resident
throughout all
stages of the
system lifecycle.

Your Text

Requirements Testing

Conformance Testing

Functional Testing

Integration Testing

Black Box Testing

Performance Testing

Regression Testing

System Testing

Unit Testing

12

Formal methods can be applied at various
points through the development process
◦ Specification
◦ Verification
Specification: Give a description of the system
to be developed, and its properties
Verification: Prove or disprove the correctness
of a system with respect to the formal
specification or property

13

14

(www. •

Problem: What could happen if I upgrade/change this system?

Answer: Model the solution and test, test, test!
15

Your Text

Your Text

Your Text

Your Text

Using a single
model allows for
system constraints
to remain resident
throughout all
stages of the
system lifecycle.

Your Text

Requirements Testing

Conformance Testing

Functional Testing

Integration Testing

Black Box Testing

Performance Testing

Regression Testing

System Testing

Unit Testing

16

17

Tree structure
showing event
parent/child
relationship

Event
container
properties

Event
attributes

Graphical
representation

of model

18

1 6 M I rm • 1n X
UI - Wind ows Internet Explorer

1@1 http://db001d:8088/main.html?model id=16

Fi!vorites Iools .!::!elp

~ Assertions r Scenario Viewer

Ji_ Naval Gunship

t R2D_activity

~- CD activity

~~ GCC_ad:lv1ty

1}- R3D_activity

t GCC2_activity

~- GMP _activity

t GMCP _activity

4- GMP2_activity

1}- CDC_activity

~- EOD_activity

~- GM_activity

Scenario Generation COMPLETED View

@] Get More Add-ons .,..

X I ~ Military Symbols I ~ US Airways I Airl ... 1

ROOT R20_activity: {* < 1> R20_displayNewTarget *};
ROOT CO_activity: {* <1> CO_spotNewTarget *};
ROOT GCC_activity : { * <0-1/0.2,0.8> GCC_setTarget *};
ROOT R30_activity: {* <0-1/0.28,0.72> R30_setTarget *};
ROOT GCC2_activity: {* <0-1/0.44128,0.SS872> GCC_openFire *} ;
ROOT GMP _activity: {* <0-1/0.4S24S4,0.S47S46> GMP _answe rRequest_GCC_openFire *};
ROOT GMCP _activity: {* <0-1/0.45793,0.54207> GMCP _answerFireRequest *};
ROOT GMP2_activity: {* <0-1/0.4633S1,0.S36649> GMP _answerRequest_GMCP _ossOata *};
ROOT COC_activity: {* <0-1/0.490183,0.S09817> COC_answerRequest_GMP_ossOata *};
ROOT EOO_activity: {* <0- 1/0.49S281,0.S04719> EOO_answerRequest_COC_ossOata *};
ROOT GM_activity: { * <0-1/0.SOS013,0.494987> GM_answer_GMCP _openFireCommand *};

E1: (GCC_targetNotSet CO_targetlost);
B1: (CO_request_GCC_openFire CO_wait_GCC_openFire (GCC_openFirefailed I<0.2S249031177832> targetMissed 1<0.58914406084842> ta rgetHit));
0 1 : (GCC_targetSet CO_followTarget (CO_abortTarget 1<0.8> B1));
G1: (CO_request_GCC_setTarget CO_wait_GCC_setTarget (E1 I <0.873> 0 1));
CO_spotNewTarget: (R20_displayNewTarget (CO_ignoreTarget 1<0.8> G1));
B2: (R30_targetNot5et GCC_targetNotSet);
A2: (R30_target5et GCC_targetSet);
02: (GCC_request_R30_setTarget GCC_wait_R30_setTarget (B2 1<0.97> A2));
GCC_setTarget: (CO_request_GCC_setTarget (GCC_targetNotSet 1<0.9> 02));
R30_setTarget: (GCC_request_R30_setTarget (R30_targetNot5et I <0.97> R30_target5et));
A3: (GMP _open Fire failed GCC_openFiref ailed);
B3: (GCC_request_GMP _open Fire GCC_wait_GMP _open Fire (A3 I <0.2S764317S284> targetMissed I targetHit));
GCC_openFire: (CO_request_GCC_openFire (GCC_openFirefailed 1<0.98> B3));
A4: (GMCP _openFire f ailed GMP _openFirefailed);
B4: (GMCP _displayOpenFireRequest (A4 I <0.6072398071> targetHit I <0.26024S6316> targetMissed));
GMP _answerRequest_GCC_openFire: (GCC_request_GMP _open Fire (GMP _openFirefailed I <0.99> B4));
OS: (GMCP _faiiReceiving_GMP _ossOata GMCP _openFirefailed);
AS: (GM_openFirefailed GMCP _openfirefailed);
BS: (GMCP _send_GM_openFireCommand GMCP _wa it_GM_openFireCommand (AS I <0.66S> targetHit I <0.28S> targetMissed));
CS: (GMCP _receive_GMP _ossOata BS);
ES: (GMCP _ request_GMP _ossOata GMCP _wait_GMP _ossOata (OS I <0.9223662294> CS));
GMCP _answerFireRequest: (GMCP _displayOpenFireRequest (GMCP _openFirefailed I <0 .99> ES));
B6: (GMP _faiiReceiving_COC_ossOata GMCP _faiiReceiving_GMP _ossOata);
A6: (GMP _ receive_CDC_ ossData GMCP _receive_G MP _ossData);
C6: (GMP _ request_COC_ossOata GMP _wait_COC_ossOata (B6 I <0.9S089302> A6));
GMP _answerRequest_GMCP _ossData: (GMCP _request_GMP _ossData (GMCP _failReceiving_GMP _ossData I <0 .95> C6));
B7: (CDC_faiiReceiving_EOD_ossData GMP _faiiReceiving_CDC_ossData);
A7: (CDC_receive_EOD_ossData GMP _receive_CDC_ossOata);
C7: (COC_request_EOO_ossOa ta COC_wait_EOO_ossOata (B7 1<0.960498> A7));

Refine your
model when you

learn more
about your

architecture.

Graphical editor
is easy to use by
most end users.

19

Requirements Testing

Conformance Testing

Functional Testing

Integration Testing

Black Box Testing

Performance Testing

Regression Testing

System Testing

Unit Testing

20

1)Event Count – Check for the existence of a
specific system state

2)Sequence of Events – can a series of events
happen?

3)Simultaneous Events – Can a combination of
events happen?

21

Execute all
system tests to

determine
potential

architecture
flaws

Model Failure?
Click on the link
to view WHY the

model fails

22

Graphical view of
the exact

sequence of
events that
violated the
assertion

23

1. Modeling and Simulation software tool that is used to dynamically model any
type of complex enterprise system to identify risks in system architecture.

2. Checks all possible system states within the model scope.

3. Capable of executing all types of system tests within a single model.

4. Modeling interface that allows a user to write models without having to learn a
modeling language (tool is designed for the average user)

24

Dr .. Joey Rivera
jrivera@riverainc.com

Phil Lushin
plushin@riverainc.com

812-246-4055

	“Applying Architecture Modeling Methodology to Enterprise Software Domains”�
	About Dr. Rivera
	Journal Publications
	Predict System Failures �Before You Build
	System of System Dependencies
	Problem Statement
	Issues with Requirements
	Produce Better Software
	Problems with Formal Methods
	Unknown System Behavior
	Model Checking
	Test Using One Model
	Summary of Formal Methods
	Eagle6 Demonstration�(www.Eagle6.com)
	Old SoS Problem, New Solution
	Reminder: Test Using One Model
	Model the Enterprise Without a Single Line of Code
	Eagle6 Model in Text Form
	Eagle6 Graphical Editor
	Test SoS Assertions
	Key: Tests via Queries
	Run All System Tests with One Model in Seconds
	Scenario Viewer
	Eagle6 Summary
	Questions?�Dr. Joey Rivera�jrivera@riverainc.com��Phil Lushin�plushin@riverainc.com��812-246-4055�

